Дешифровка цифровых знаков майя не составила большого труда для ученых. Причиной тому - поразительная простота и доведенная до. совершенства логичность системы их счета. Можно лишь без конца изумляться великой мудрости народа, сумевшего практически в одиночку подняться на недоступные вершины абстрактного математического мышления, одновременно приспособив его к своим конкретно-практическим земным нуждам. Чванливая Европа еще считала по пальцам, когда математики древних майя ввели понятие нуля и оперировали бесконечно большими величинами. Разве это не удивительно?..
Древние майя пользовались двадцатеричной системой счисления, или счета. Почему именно число 20 наряду с единицей стало основой их счета, сейчас невозможно установить с достаточной достоверностью. Но на помощь приходит простая логика. Она подсказывает, что скорее всего сам человек был для древних майя той идеальной математической моделью, которую они и взяли за единицу счета. Действительно, что может быть естественней и проще, коль скоро сама природа «расчленила» эту единицу «счета» на 20 единиц второго порядка по числу пальцев на руках и ногах. Тут и выдумывать ничего не нужно, ибо ты сам являешь собою превосходную и к тому же уже решенную арифметическую задачу!
Между прочим, подтверждение именно такому объяснению возникновения двадцатеричной системы счета мы находим в этимологической связи слова «виналь» - так на языке майя назывался двадцатидневный месяц - со словами «двадцать» и «человек». По-видимому, говоря «один человек», древние майя механически представляли себе число «20», если, конечно, в это время речь шла о каких-то количественных единицах.
Известно, что европейцы, как, впрочем, и подавляющее большинство народов мира, пользуются сейчас так называемой арабской цифровой системой, созданной в Индии лишь в конце первой половины прошлого тысячелетия (V век). В соответствии с этой системой- ради справедливости ее следовало бы называть индийской - мы расставляем цифровые знаки горизонтально - строчечным способом, применяя «позиционный принцип» - одно из замечательных достижений человеческого разума. Это значит, что цифры стоят друг за другом в строгом порядке, справа налево от первой позиции или первого порядка к последующим, а именно: единицы, десятки, сотни, тысячи и т. д.
Древние майя также пришли к использованию позиционного принципа. В отличие от нас, европейцев, им не у кого было заимствовать это принцип, и тогда они сами додумались до него, причем почти на целое тысячелетие (!) раньше Старого Света. Однако запись цифровых знаков, образующих число, они стали вести не горизонтально, а вертикально, снизу вверх, как бы возводя некую этажерку из цифр. Поскольку счет был двадцатеричным, то каждое начальное число следующей верхней позиции, или порядка, было в двадцать раз больше своего соседа с нижней полки «этажерки майя» (если бы майя пользовались десятеричной системой, то число было бы больше не в двадцать, а только в десять раз). На первой полке стояли единицы, на второй - двадцатки и т. д.
Майя записывали свои цифровые знаки в виде точек и тире, причем точка всегда означала единицы данного порядка, а тире - пятерки (Особый знак для пятерки послужил основанием для зачисления системы счета древних майя в так называемую пятерично-двадцатеричную, однако вряд ли можно согласиться с этим, поскольку пятерки-тире лишь упрощали написание цифровых знаков, не внося каких-либо принципиальных изменений в двадцатеричную систему счета.). Цифровые знаки древних майя смотрите на 72-й странице.
В приведенной таблице не хватает двадцатой цифры. Но это не 20, ибо у майя 20, так же *$ак у нас 10, было уже не цифрой, а составным двузначным числом. Двадцатой цифрой счета древних майя был «нуль», и изображался он в виде стилизованной раковины:
Цифра 'нуль'
В двадцатеричной системе, знающей понятие нуля, первым двузначным числом могло быть только число 20. Так оно и было. Но как изобразить его? И майя решают эту задачу необычайно просто: над раковиной-нулем они рисуют точку, то есть первую цифру своего счета. Новый знак - он изображался так:
Первоначальная единица счета второй позиции многозначного числа
- обозначал первоначальную единицу счета второй позиции или второй полки многозначного числа (многополочной этажерки).
Система чисел майя
Однако на этом похождения раковины-нуля не кончались. Раковина все же стала появляться и без точки, располагаясь на разных полках цифровой этажерки майя. Это означало, что настоящее число было образовано без участия единиц той полки, на которой в данном случае находилась раковина. Она говорила, что единиц этой полки (на которой она расположилась) попросту нет, как нет, например, десятков, сотен или тысяч в числе, записанном арабскими цифрами, если на отведенном для них месте стоят нули.
Но коль скоро в числе наличествовала хотя бы одна-единственная единица любой из полок, довольно сложный рисунок раковины-нуля сразу же исчезал с нее. Покажем это условно на простейшем примере: + = , что соответствует числу 21 в нашем представлении.
Действительно, если нижняя точка находится на нижней полке, то это обозначает наличие одной единицы первой позиции, или, попросту говоря, «единицу», но уже не как абстрактный цифровой знак, а как конкретное число. Верхняя же полка указывает на наличие одной единицы второго порядка, каковой является двадцатка в двадцатеричной системе. Следовательно, перед нами двузначное число 21, образованное в полном соответствии со строгими законами позиционного принципа, но только расположенное не горизонтально, как мы привыкли, а вертикально. Проверим свой вывод простейшим арифметическим действием - сложением:
1 «единица» + 1 «двадцатка» = 21.
Чтобы окончательно усвоить урок математики майя, рассмотрим написание нескольких двузначных чисел майя; они наглядно продемонстрируют технику применения ими позиционного принципа, условно названного нами «числовой этажеркой майя»:
Числовая этажерка майя
Здесь было бы вполне естественно написать «и так далее», однако это самое «и так далее» как раз и не получается...
В двадцатеричной системе счета древних майя есть исключение: стоит прибавить к числу «359» только одну-единственную единицу первого порядка, как это исключение немедленно вступает в силу. Суть его сводится к следующему: число 360 является начальным числом третьего порядка (!), и его место уже не на второй, а на третьей полке.
Но тогда выходит, что начальное число третьего порядка больше начального числа второго не в двадцать раз (20 X 20 = 400, а не 360!), а только в восемнадцать! Значит принцип двадцатеричности нарушен! Все верно. Дело обстоит именно так. Это и есть исключение.
Но чем оно вызвано? - естественно возникает вопрос. А вызвано оно - что самое удивительное - соображениями сугубо практического характера, и можно лишь в который раз изумляться и восхищаться поразительной мудрости, невероятному рационализму этого народа, создателя великой цивилизации.
Оказывается, майя не побоялись нарушить строгий, четкий строй двадцатеричной системы, чтобы приспособить абстрактное построение чисел к своим конкретным нуждам. И сделали это столь же просто, сколь гениально. Математические расчеты с применением многозначных чисел у майя были в основном связаны с астрономическими вычислениями, которые лежали в основе календаря. Чтобы упростить их, они максимально приблизили первоначальное число третьего порядка к числу... дней своего года. Ведь в восемнадцати двадцатидневных месяцах, составляющих календарный год майя, число дней как раз и будет равно 360!
Так, начав с конкретного (один человек - двадцать пальцев), древние майя поднялись на вершину абстрактного мышления, создав двадцатеричную систему счета. Однако, обнаружив известные неудобства в абстрактном, они решительно приспособили его к своим практическим нуждам!
При образовании чисел четвертой и всех последующих полок-позиций «этажерки майя» принцип двадца-теричности вновь восстанавливается: первоначальное число четвертого порядка - 7200 (360 X 20); пятого - 144 000 (7200 X 20) и так до бесконечно больших величин. Интересно отметить, что майя были знакомы с ними не только теоретически. Вспомним хотя бы стелу из священного города Копана, на которой жрецы записали начальную, правда мифическую, дату летосчисления майя - 5 041 738 год до нашей эры!